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Small Strain Accompanied by lwder.' s R-tat.oon

by P. M. Naghdi and L. Von: ' mp.,ue

Abstract. This paper is mainly concerned with the construction of a theory

of material behavior with infinitesimal strain accompanied by moderate
rotation. After introducing a definition for moderate rotation and
establisning a numbexr of theorems pertaining to its properties, precise

estimates are obtained for the (local) moderate rotation and related kine-
matical results in terms of infinitesimal strain. For motions which result

in small strain accompanied by moderate rotation, the invariance of
constitutive equations under arbitrary superposed rigid body motions is
discussed with particular reference to an elastic material.
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1. Introduction

In order to state clearly the purpose of this paper and to motivate the
developments that follow, consider first the manner of construction of an
infinitesimal theory of deformation. In constructing such a theory, if as
usual it is assumed that the displacement gradient is small, then both the
strain and the (local) rotation are small also. On the other hand, if only
the strain tensor is assumed to be small, then the rotation tensor is not
necessarily small. It is then of interest to ask whether or not any con-
dition imposed on the strain field would suffice to ensure the smallness
of the rotation also. More generally, suppose it is desired to have the
rotation moderately large in some sense., Is it then possible to restrict
the strain field so as to ensure that it is accompanied by moderate
rotation?

Some insight into the above questions is provided by a well-known
result of the infinitesimal theory which states that the gradient of the
infinitesimal rotation can be expressed in terms of the gradient of the
strain field (see for example Sokolnikoff, 1956, p. 27). It is not dif-
ficult to see that some corresponding result should exist even when the
deformation is not infinitesimal. Indeed, in the context of a finitely
deformed body, the deformation gradient tensor F can be expressed as a
product of the (local)rotation tensor B and the stretch tensor y which also
determines a measure of strain such as the relative Lagrangian strain E.
That there must exist some connection between the gradient of the stretch
y (or the gradient of the strain §) and <he gradient of the rotation B
becomes evident when one recalls the compatibility condition that F must
satisfy. The main purpose of the present paper is to derive a representa-

tion for the rotation and deformation field directly from the strain, which
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can then be used to estimate the magnitude of R in terms of the magnitude
of 9 or E’ Results of this kind are ~f interest in various contexts and
especially for materials undergoing deformation in which the strain and
rotation are not necessarily of the same orders of magnitude. In fact, in
a number of theories for special bodies, such as those for shells and
rods, there are circumstances in which the motion results in small strain,
while the rotation and the deformation may be large or moderately large.
Motivated in part by the remarks made in the preceding paragraph,
most of the paper is concerned with the development of a procedure for the
construction of a theory of infinitesimal strain accompanied by moderate
rotation, although the procedure is applicable to other situations in which
the strain and the rotation may be of different orders. Thus, after
introducing a geometrically appealing definition for moderate rotation
and establishing a number of relevant theorems pertaining to. its properties,
estimates are obtained for the angle of rotation and the moderate rotation
tensor and these are eventually expressed in terms of infinitesimal strain.

These and related kinematical results are then put in a properly invariant

form, and the invariance of constitutive equations under arbitrary superposed

rigid body motions is discussed in the case of an elastic material under-
going small strain accompanied by moderate rotation. Although throughout
the paper use is made of the direct (coordinate-free) notation, which often
allows the results to be stated in their simplest form, on occasions we
also employ the component forms (at least partially) of the various equa-
tions since these are more convenient in explicit calculations. A brief
account of the notations used and some mathemati~al preliminaries is given
at the end of this section and additional notations and mathematical

terminology are collected in Appendix A.
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The problem of the determination of the rotation temsor R from =
strain tensor, and the connection between them, has a long history that
dates back o Cauchy. A detailed account of the subject can be found in
sections 34-38 and 55-57 of Tiuesdell and Toupin (1960). Truesdell and
Toupin (1960, p. 276) also discuss in some detail a measure of rntation --
called mean rotation -~ introduced by Novozhilov (1953) and use this in
their development of a theory of infinitesimal strain and infinitesimal
rotation (Truesdell and Toupin 1960, p. 305). More recently, in the con-
text of finite deformation, the problem of the determination of the rotation
tensor B from the strain tensor has been discussed by John (1961) and by
Shield (1973). In particular, Shield has derived a useful representation
of the integrability relations for finite strain in a Euclidean space, and
has further shown that for two-dimensional deformation the rotation and
deformation field can be determined directly from the knowledge of strain

by a line integral.

1.1 Scope and outline of contents

After collecting some kinematical and kinetical results in section 2,
for clarity and ease of reference we include a sketch of the derivation of
the differential equations for rotation R in section 3. Since the presenta-
tion of this development differs somewhat from that given by Shield (1973),
one or two of the details are collected in the first part of Appendix B
(between (Bl) and (B4)) where a correspondence with Shield's (1973) main
results are indicated. We also take this opportunity to include in
section 3 two elementary kinematical theorems concerning the rotation R
and the deformation gradient which are utilized later in the paper.

We begin section 4 by defining in precise terms four measures of

smallness denoted by feo,el,ez,es} and associated, respectively, with
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strain, strain gradient, rotation and rotation gradient [see the expressions
(4.1)-(4.2) and (4.5)-(4.6)]. We then observe the conditions under which these
four measures can be related [see (4.7)] and go on to show that the rotation
gradient is of the same order of magnitude as the strain gradient, i.e.,

€4 is of the same order as €4 [see (4.17)]. Under the additional assumption
that the rotation tensor is the identity tensor at some material point in
the body, we prove in subsection 4.1 that the rotation tensor is of the

wame order of magnitude as the strain gradient, i.e., €, is of the same
order as €1 [see (4.26)]. Later, making use of a further assumption that
relates the two measures of smallness €, and €1, We express the rotation
tensor and all other kinematical quantities in terms of €, OF equivalently
the infinitesimal strain.

In the second part of section 4, we introduce two separate definitions:

One for (1) infinitesimal strain accompanied by infinitesimal rotation
(Definition 4.1) and another (2) for infinitesimal strain accompanied by
moderat:: rotation (see Definition 4.2). Although our main objective here

is to deal with the latter, we find it instructive to prove a number of
results in subsection 4.2 pertaining to the infinitesimal theory of motion.
The remainder of section 4 {(subsections 4.3 and 4.4) deals entirely with
the case of infinitesimal strain accompanied by moderate rotation. In
Theorem 4.3, we essentially prove that if the strain is of g(eo) and B is

a moderate rotation, then the relative displacement gradient is of g(ez).

In a subsequent Theorem 4.4, with the help of a known representation for R
in terms of angle of rotation 6 and the results stated in the preceding
paragraph, we estimate the order of magnitude of B in terms of the
infinitesimal strain We also obtain in subsection 4.3 expressions for

the deformation gradient F and the relative displacement gradient H when
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the motion is such that the strain is of 0(50) but is accompanied by
moderate rotation of O(Sf).

In a recent paper, Casey and Naghdi (1981) have constructed a
properly invariant theory in which, apart from superposed rigid body
motions, both the strzin and rotation (and hence also the relative
displacement gradient) are infinitesimal and have further shown that in
this infinitesimal theory of motion the constitutive equations, as well
as the equations of motion, are all properly invariant under arbitrary
(not necessarily infinitesimal) superposed rigid body motions. In the
latter part of section 4 (see subsection 4.4), by using the procedure of
Casey and Naghdi (1981) we remove from all motions the translation and
rotation at any particle Y of the body, thereby rendering all kinematical
quantities (including the infinitesimal strain) properly invariant under
superposed rigid body motions. Finally, in section 5, in a manner similar
to that of Casey and Naghdi (1981) we briefly discuss the invariance
properties of the constitutive equations for small strain accompanied by
moderate rotation and further demonstrate in Appendix C that, as in the
case of the infinitesimal theory, for the theory under discussion the
particular choice of the particle Y is again immaterial in effecting the

properly invariant nature of the results.

1.2 Notation and mathematical preliminaries

We close this section with a short glossary of notations and some
mathematical terminology that will be needed in what follows. Any linear
mapping from V, the three-dimensional translation vector space associated
with the Euclidean point space &, into V will be called a second order
tensor. The trace and determinant functions of secund order tensors will

be denoted, respectively, vy tr and det. The transpose of a second order

5.
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tensor T will be denoted by TT, while the inverse of T if it exists will

be denoted by T'l. The usual inner product. on V is written a*b for any

two vectors a,b € V and the (induced) rorm, or magnitude, of a is given by
1
llall = (a+a)? The set of second order tensors can be provided with an

v 1
g inner product A+ B= tr(A.TB) and a norm ||A]] = (A~ A)? for any second order

tensors A and B. We note that the definition of the norm of a second order

o

T T

tensor satisfies the usual properties of the norm, i.e.,

RO
-

lall >0 , and |[A]] =0 if and only if A=

loall = lal 1Al . (1.1

R ARt

= A+l < 1AL + izl

for any second order tensors é and E and for any scalar q. Further, it . i
: I ) can be shown that ‘
1A & < [|allilall (1.2)
L ‘I for any second order tensor é and any vector a. In addition, for any

‘ second order tensors A and B, we have

A sl < falilsl (1.3)

lhe tensor product a®b of any two vectors a,b € V is the second order

tensor defined by (g@l_g)v = (b v)a for every vector v. We recall the
formulae tr(g@lz) =a-b, (a®b)T=b®a, (a®b) (c®d) = (a®d)(be¢c),

(3@13) . (S®d) =a+*cbe d, which hold for all vectors a,b,c,d € V. In

3 . addition, we note that

g

S |
- la@uil = Jlallllbll (1.4) ;3
5

i

for all a,b € V,
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2. Some preliminary kinematical and kinetical results

1 Let X be a particle of a body B and denote by X and x the position

vectors of X in a fixed reference configuration Ko and in the current con-
figuration k, respectively. A motion of # is the mapping X which assigns
the position vector x=x(X,t) to the particle X at time t. In the con-

. *
3 figuration Koo let @ occupy a region 920 embedded in a 3-dimensional

Euclidean space € and denote the boundary of .‘Ro by BSRO. The image of

i e e e ool i il

R, in x¢ will be denoted by R with boundary 3R. We assume that at each

fixed t, the mapping x of .‘RO into R possesses a smooth inverse denoted

-1
by X -
k2 oy . . .
: : Let' F=Grad X be the deformation gradient relative to the configura-
: ) N - 3
i .y tion Ko and recall that det F>0. Then, by the polar decomposition theorem, ;
_E‘ N -~
k F can be decomposed in the form '
,‘ ]
: |
.‘ | F=RU , 2.1) :
~ where the right stretch U is a symmetric positive definite second order !

)
§
:

tensor, the (local) rotation R is a proper orthogonal tensor satisfying

R'R=RRT =1 , detR=1 (2.2)

and I stands for the identity tensor. The right Cauchy-Green measure of

deformation C can be represented in the forms

C=EF = 2 (2.5) *

Ph-a Lo e

and the relative (Lagrangian) finite strain tensor E is given by

*
A region is regarded here as a nonempty connected and compact subset of €
having a piecewise smooth boundary.

N e e

Definition of the gradient of a vector function is given by (A4)1 of
Appendix A,

7.
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In order to express certain expressions in component form, it is
convenient to employ two fixed right-handed orthonormal bases {EA}’
(A=1,2,3), ard {ei}, (i=1,2,3), in V, the former basis being used for
vector fields defined on the region QSR and the latter for vector fields
defined on R. The convention of summation over repeated Latin index

will be employed. Thus, for example, we write X= erA’ and x=xiei.

~

Furthermore, a second order tensor A may be represented by Aijeigej’

A ®ey or Ane, ®e as appropriate, where Ajj=egrhe;= A (gi@gj) ,

etc.

’

The relative displacement u and the relative deformation gradient

v dofined by

and

H= F-1

= ®
Grad w =1 ¢ ¥

where a comma stands for partial differentiation with respect to the

coordinate Xg The strain tensor E can be expressed as
E=4(H+H +HH)

1

Uy ety gt uy Uy ) ®e

Also, it is easily seen from (2.4) that Grad C=2 Grad E or equivalently

with the use of (AS)Z’

Cx=2E = (U (= U (+UU

A motion x+ is said to differ from X by a superposed rigid body motion

-~

if and only if

X (Xt = Qiex(X,t) +a(t) , tT=tea

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
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for some proper orthogonal second order tensor-valued function Q(t) of time,

some vector-valued function a(t) of time and some real constant a. The
configurativon of @, at time t* in the motion x+ will be denoted by <.

~

The deformation gradient F+(X,t+) calculated from (2.9) is related to F by
F' = Q(t)F

Then, it can be easily verified from (2.3), (2.4) and (2.1) that

+ + + +

c=C,U=U,E =E,E =E K = Q(t)R

+

. . ‘. . . . + .
The relative displacement fieid associated with x+ is u =x -X and its

gradient §+= Grad 5+ in terms of (2.6) is given by

HY = QF-1 = QH+Q-1

-~

Thus, C,U,E are unaltered under superposed rigid body motions, while R is
unaltered apart from orientationg. The displacement gradient E’ however,
is neither unaltered nor unaltered apart from orientation under the
transformation (2.9).

For later reference, we recall here an exact representation for the

*
rotation tensor R, namely

where

SFor the motivation and the precise meaning of this terminology, see
Green and Naghdi (1979).

-
see Truesdell and Toupin (1960, p. 2 v, Eq. (37.17)).

[{a}

(2.10)

(2.11)

(2.12)

(2.13)
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?= ?T = (1-cos 6)(3@}3-5) = (1-cos e)(uKuI,'GKL).e.KQSL s

(2.14)

T , B
Y=-¥ =-sinOecy=-sinbe e @e . 1

In (2.14)l 9 GKL are the components of the identity tensor E,

} € = €K e €L @ ey is the permutation symbol in 3-space, Y =Hyey is

~

the unit vector in the principal direction of R that is associated with

the principal value 1, and 6 1:presents the angle of rotation calculated

from the relationship

tr R=1+2c¢cos ® , -m<8<nm . (2.15)

~

We introduce now some kinetical quantities needed in the development

i

i of section 5. Thus, with reference to the motion X, iet p=p(X,t) be the
mass density in the configuration «, n the outward unit normal to the

surface 3R, t=t(X,t; n) the stress vector acting on this surface and

JRRUTI N ERVIPTY 1P T R

I - T=T(X,t) the associated Cauchy stress tensor. The corresponding quantities
- in the configuration <" will be denoted by p+,n+,t+ and T+, respectively.

We recall that under the superposed rigid body motions (2.9), p+ and n"

RSN NIRRT LN

transform according to

)
L. ot =p , n"=q)n (2.16)

et e i, .

+ . +
and adopt the usual assumption that t for he motion X 1is related to t

-~

k2

by

: t" =t . (2.17)

It then follows from the relation t=T n, (2.16)2 and (2.17) that

™ = Q)T gT(t) : (2.18) -




3. Differential equations for the rotation tensor

In order to examine locally the deformation of the body &, consider a
material line element d§ at 5 in the reference configuration Ko As a
result of deformation, d§ is mapped into a line element d§==§ d§ at x in
the present configuration K. Since the space £ is 3-dimensional, in order
to determine the deformation of an arbitrary material line element it will

suffice to consider the deformation of three mutually orthogonal line

elements dXM, namely

d§M=Ed§M , (M=1,2,3)

Let the magnitudes of dXM and dxM be denoted by dSM and

dsM, respectively, and introduce the unit vectors K, in the directions of

M
dEM and the unit vectors EM in the direction of dfM' Hence, the three
unit vectors EM (M=1,2,3) form an orthonormal basis which, without loss
in generality, will be identified with the orthonormal basis {g:} in 50.
In general, the line elements d§M undergo both stretch and rotation and
the ratios (dsl/dsl, dsz/dSZ’ dss/dss) denoted by AM (M=1,2,3) are called
the stretch of the line elements. The above observations may be summarized
as
dsM
dXy = ey 98y » dxy = kydsy Ay = ds,, (no sum on M)

It follows from {3.1) and (.5,2)1 2.3 that

dfM' e, = FiM dSM = AM kMi dSM (no sumon M) ,

where kMi are the components of the unit vector k,, referred to the
orthonormal basis {ei} in the current configuration k and FiM are the

components of F referred to the basis {ei ® eM}, i.e.,

= Q = @ = =
D= FanBi®m ™ ¥ 0 M7 Fady = F oy

11.

(3.1)

(3.2)

(3.3)

(3.4)
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In view of (3.4), the results (3.3) may also be displayed as

My = Aky = 3%/9%,  (no sumon M) . (3.5)

It should be noted that since F is invertible, MM are linearly independent
and form a basis. Moreover, MM can be interpreted as the image of the

material basis KM (or eM) in the configuration k. It is clear that the knowledge

of the images of Ky at every point gives full information about the

components FiM=:gi' gM' Given E (or the components FiM)’ the necessary

b ‘ and sufficient conditions for the existence of a deformation function

b . o e tniall i i i

*
whose gradient is F are the compatibility conditions

T

1 = =2
(Grad E) = Grad F or FiK,L FiL,K . (3.6)

In terms of M, the conditions (3.6) can also be written as

M’

= M (3.7)

g I . My,L ® Mk

Clearly the inner product of M, and M, gives the Cauchy-Green measure, i.e.,

Cku = FikFip = Fig®i " Fiu8y = Mo My (3.8)

DUUPSEEN

© o

and it is seen that the components of the metric tensor associated with the

material basis ﬂK are CKL'

L’ it does not necessarily follow that there exists a deforma-

R

< Given CK

tion function ¥ whose gradient F satisfies (2.3)1. Thus, we must ask the

~

e

- , following question: If C is specified at every point of the body, can we
find F (or equivalently MK) derivable from ¥ such that (2.3)1 or (3.8)
p are satisfied? To this end, we proceed to express the derivative of My in

A terms of the derivatives of C. First, we differentiate (3.8) with respect

R AR T o MR D e St el

to XM and obtain

*The definition of the transpose in (3.6)1 is given by (AZ)1 of Appendix A.

12.
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Cr,m ™ Mo M) = Mo Mt Mm (3.9)

Next, by suitable combination of expressions of the type (3.9) and with the
help of (3.7), the derivative of M, can be expressed in terms of partial

derivatives of components CKL alone, i.e.,

My Meom = FinFikm = %0k Cug,m ) (3.10)
or equivalently in coordinate-free notation++
T T T3
F" Grad F = [(Grad C) " + Grad S- (Grad C) “] . (3.11)

Thus, if there exists an f which satisfies (3.6) and (2.3)1, then F must
satisfy the differential equations (3.10) or (3.11). Clearly, the dif-
ferential equations (3.10) or (3.11) are the necessary conditions for the
determination of F from the knowledge of C. The converss, proved in

Appendix B, is*: if a field F satisfies (3.10), then (2.3)1 holds and further-
more a motion X exists whose gradient is E,

Since the stretch tensor U is uniquely determined by C, we may use

§

(2.1) to obtain the following differential equations® for the rotation R

in terms of U:

R Grad R = (3.12)

where A is a third order tensor given by

o
'*The notations Tp,Tz and Tz for the transpose of third order tensors is
introduced in (A2) of Appendix A.

*This sufficiency argument is discussed in the first paragraph of Appendix B.

§A sketch of the derivation of the differential equations (3.12) or equiva-
lently (3.14) is given in the second paragraph of Appendix B leading to (B4).
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A =-4° = 4{U " [crad U- (Grad U) °]

T
+ ([Grad U- (Grad U) “JU ")

T T

+ (vl [Grad v~ (Grad v Sjuh) lu}

Thus, if R exists such that (2.1) holds, then it is necessary that R satisfy
(3.12). Conversely, if a proper orthogonal tensor R is a solution of (3.12),
then by reversing the procedure used in obtaining (3.12) from (3.10), it can

be shown that the tensor F=R U satisfies (3.10) and the existence of a

deformation function X is ensured.

-

In the remainder of the paper, it is often more convenient to write

(3.12) as

(K=1,2,3) ,
where each éK (K=1,2,3) is a skew-symmetric second order tensor such that

R
AT A =dey

-1 -1 -1
= {u""u -U U U ® e )U
HU U U Ul (e @ e )

-1 -1 -1
- U (e ®@e)U U U Ule @)U

~

-1 -1
-U(e @e Uy, U

It should be noted that the right-hand side of (3.13), or equivalently

(3.15), involves only the stretch U and its gradient.

Integrability conditions for the existence of a solution B to (3.14)
have been discussed by Shield (1973) based on a paper of Thomas (1934). A
brief statement of these conditions in the context of the present paper is
given following (B4) of Appendix B.

In the rest of this section, we state two theorems, the proofs of

14,

(3.14)

(3.15)
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which utilize the representation (3.14) or some of the preceding results.
The first of these pertains to uniqueness of the rotation tensor to

within a rigid body rotation and may be stated as

~

Theorem 3.1. Let a stretch field U derivable from a motion X exist
such that the compatibility conditions (3.6) are satisfied and let B and
52 be any two rotation tensors satisfying (2.2). Then, BI and Bz cor-
responding to U are solutions of (3.14) if and only if they differ by a
rigid body rotation.

Proof. We first prove the necessity. Suppose that 51 and R, are
any two distinct proper orthogonal tensors, each of which satisfy (3.14)

corresponding to the same stretch, i.e.,

T T
RiBik * 8% » BBy o= A (3.16)

Consider next the space derivative of the product RIRZ, namely
T T T T T
(RiRy) ¢ = Ry (RyRy IRy + Ry (By ¢R)IR

T T
= RiARRS - RiARy

= 0 (3.17)

where in obtaining (3.17)1 the first term has been premultiplied by
Rlem | and the second term has been postmultiplied by RZRS' 1 and where

use has been made of (3.16)1 2 and (3.15)1. It follows from (3.17) that

the product RIRT mist be a second order tensor which is independent of

~d

position but may be a function of time. Since each of the two tensors 51

and R, is proper orthogonal, the product R1R§ is also proper orthogonal,

say go(t). Thus, we may conclude that B 5;-90 or equivalently

e v ¢ =

s et o e

Ll i Bl e e o

= R 3.18
51 go~2 ) ( )
15.
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Hence R, and R, differ at most by a proper orthogonal tensor function of

time corresponding to a superposed rigid body rotation. To show that the

conclusion reached ‘s also sufficient, we only need to replace R in (3.14)

by 905 and the theorem is proved.

An immediate consequence of Theorem 3.1 is the following

Corollary 3.1. Corresponding to a given field of deformation C, the

deformation gradient field F can be determined to within a rigid body

rotation,
The proof follows at once by recalling (2.1) and noting that corresponding

T T e

to a given C the tensor U is uniquely determined by (2.3)2. A proof of

Rl Rt €

this result was apparently first given by Shield (1973, p. 484) who employs

a different procedure than that of our Theorem 3.1 and does not make use

T -

. of (3.14).
L . {
! ' : In the statement of Theorem 3.1, the existence of a motion ¥ whose , i

Suppose instead that a field U is prescribed

h stretch field is U was assumed.
It is then natural to ask under what conditions such

.

as a function of X.

a stretch is the gradient of some deformation function X. In other words,

what restrictions must be placed on U in order to guarantee that the

I
deformation gradient is of the form

¥
’ E=U or  Fiyp= 0, Uy (3.19)

k This leads us to state the following

T

Theorem 3.2. The restrictions

E;
T
Grad 9 = (Grad y) or UKL,M = UKM,L (3.20)

]

!
-
1

)
on U are both necessary and sufficient to ensure the existence of a motion

whose gradient is symmetric and hence corresponds to pure stretch.

16.

i S e A o -
N I W 0y, A i Y
Mt 1 e e R w W L S T
oy RUTES SRt [ Nodne? TRE AN LB DRI T Ly LT
R T I L e e e e
W AL A R R ) AN L T LMY




Proof. Suppose a motion exists whose gradient satisfies (3.19).

Then, the compatibility conditions (3.6) imply the restrictions (3.20) as
necessary conditions for the existence of X. To show sufficiency, assume !
the restrictions (3.20) on U. With the use of (3.20), it can then be shown

that the right-hand side of (3.15) vanishes identically* and hence A, = 0.

Further, by (3.14) we have RTR =0, This, in turn, implies that R
~)

< S,Kk° 2

k=0

since R is nonsingular. Hence, R must be a function of time only cor-

el - I - G e

responding to a superposed rigid body rotation, say Qo‘ Thus, a motion

i : QZx whose gradient is Q:F is sufficient to satisfy (3.19) and the

~ ~

T T

theorem is proved.

e ot thmne

PP

|
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4. Kinematics of deformation with moderate local rotation

We are concerned here with a kinematical development in which the
Lagrangian strain is in{.nitesimal but is not necessarily accompanied by
infinitesimal rotation. To make these notions precise, in a manner

similar to that of Casey and Naghdi (1981}, we first define a measure of

smallness of strain by the nonnegative real function§

e, = e (t) = sup Nex,eyll (4.1)
Xeg ~~°

~ )
where sup stands for the supremum (or least upper bound) of a nonempty
bounded set of real numbers. If hO(E) is any scalar-, vector-, or tensor-
valued funciion of E defined in the neighborhood of E=0 and satisfying
the condition that there exists a nonnegative real constant C such that
Hho(g)]l < (.‘.e::;1 as e +0, then we write ho-O(eg) as e +0.
The statement §==9(eo) as eo-*o does not imply any restriction on the

space or time derivatives of E. In particular, it is possible for

Grad E=E  ®e,

small. To deal with such circumstancer, - intuioduce a second measure of

or equivalently E g to be finite while E itself remains
H’ “~

smallness by a nonnegative real function

€; = g/ (t) = max sup ||E K& e ., (x=1,2,3) . (4.2)
[

K xeg,

If h (E K) is any scalar-, vector-, or tensor-valued function of Grad o

EIn the paper of Casey and Naghdi (1981), a quantity corresponding to €0
was defined in terms of the displacement gradient rather than the strain.

*In writing (4.2), for simplicity we have used the norm of the second order
tensors E , defined in section 1. It is, of course, possible to define
€) in terhs of Grad E, but this requires also a definition for the norm

of a third order tensor which is not introduced in section 1 or
Appendix A.

18.
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defined in the neighborhood of E | = (E l’E 2,B 3)- 0 satisfying the con-

K -,
dition that there exists a positive real constant D such that

P n N n .
llhng,K) || < De; as £ >0, then we write h,=0(e;) as €, +0. Further, if

there exists a nonnegative constant C such that

e? < Eég with Kk,% integers |, 4.3)

then it can be shown that*
Ihy e ol < @/ Heptk 4.4)

Provided that (4.3) holds, the last result implies that any function

n/k

n .
hl(E,K) of 0(81) as e1-+0 is also of 0(80

+0,
) as € 0
We now introduce two additional measurss of smallness, one associated
with the rotation tensor and another with its gradients. Thus we define

the measures of smallness ¢, and Egs respectively, by the nonnegative

2

real functions

€, = €,(t) = sup IR - 1]| (4.5)
Xegp ~ ~
b 0
and
€5 = £4(t) = max{ sup || R K“ }o, (K=1,2,3) . (4.6)
K 5 E.ﬂo -

If hz(B-I) is any scalar-, vector-, or tensor-valued function of R defined
in the neighborhood of R=1 satisfying the condition that there exists a
positive real constant D, such that |]h2(5-£)H < Dzeg as €,+0, then we
write h2==0(eg) as ez-*O. Similarly, if hS(B,K) is any scalar-, vector-,

or tensor-valued function of R K (K=1,2,3) defined in the neighborhood

"The details are discussed following (BS) in Appendix B.
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TR

~ 0 < ||R-IH2 < 8 and consequently the measure of smallness €, in (4.5)

e e bl et CREC SR

T T T

of R K==0 satisfying the condition that there exists a positive real
~)

n .
constant D, such that llhs(B,K)” <D;e; as €;+0, then we write

h3=0(e§) as €5+ 0. Further, the four measures Ep? (m=0,1,2,3) can

be related if there exist nonnegative constants Eﬁm’ m,n=0,1,2,3,

such that

= R . .
€n < Cmnen with k,% integers |, 4.7

and then similar to (4.4) it can be shown that any function of O(E;) as

n&/k

_ em-*O is also of 0(en

) as €_-+0,.
n

Since R is a proper orthogonal tensor, it follows from the definition

of the form of a second order tensor that
h IR-I]|1? = tr{R-DTR-D} = 23-tx R) . (4.8)
Recalling the expression for tr R in (2.15), which implies that tr R

| " satisfies the inequality -1 € tr R € 3, it follows from (4.8) that

is bounded from above by 2/Z, i.e., €y < 2/2.

A solution of (3.14) involves both U and its derivatives U K* In
~ ~ 3

order to accommodate the strains and strain gradients of different orders
of magnitude, we first express U K in terms of E and E K" Remebering that
~ ~ ~s

by (2.3)2 and (2.4) the stretch 9 may be regarded as a function of g, from

et e me . o

"k
the Taylor expansion of U(E) about E=0 follows

12,1

3
U= IvE-gr B egy GED e (4.9)

w
*A statement of Taylor's formula of the form (4.9) is given by Theorem 8.14.3 |

N of Dieudonné (1969, p. 190). Since all the spaces considered here are real :
Euclidean spaces and since all finite dimensional Euclidean spaces are
Banach spaces, the theorem in (Dieudonné 1969) is directly applicable.
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and by differentiation we have

Uk = B - %(E (E+EE )

+1[B E + EE E+EEK]+'-' ,

~a

(4.10)

where in writing (4.9) we have also used the fact that U=1 at E=0. Before

proceeding further, in the context of the classical infinitesimal
kinematics, we recall the approximate formulae for U,C and their inverses,

all estimated in terms of the infinitesimal Lagrangian strain, i.e.,

£) U-1=£"§=I'9(€) ’

C=1+2E=1+0() , C =I-2§=£-Q(eo, as eo-0

Now suppose that E= 0(&:0) as eo+0 in (4.10) but as yet impose no restric-
tion on E K’ It follows that each term of the last bracket in (4.10) is
~

of 0(&:5) and, to the order eg, the expression for U g can be approximated
~ ~s
by

Ug=Ex- E E+§§,)-E +0(so) , as s°+0

We observe that with U and U X given by (4.11)2 and (4.12), it can be
verified that the expression (UU) g = 2E 2E K and thus (4.11)2 and (4.12)

satisfy (2.8)2 to the order €5 Introducing the approximations (4.11)

and (4.12) on the right-hand side of (3.15), we obtain

T - )
Ag == A = E [(eg®2) - (e ® e)E |

+/,{E E EE -Z[EE ®eL) (eL®eK)E E]

" 2B @ oE, L - E (e @ B}

where terms of O(ei) have been neglected.

A MR L P e T Y S iR 4 Ry o
CEN A L 78 { 1
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(4.11)

(4.12)

(4.13)
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4.1 Estimate for the angle of rotation

With the help of (1.3), we can estimate the norm of AK from the

expression (4.13):

lagll < 1lE, Cey@ep ] + licep @ep)E, Il + % {lE LE
i + NEE gl +21IEE (e @epll +2 (e @e)E (El

~

+ 2||B(e; @) ([l +2[[E (e @eIEND

< 6g, + 13 g, = €, (6+ 13 ) . (4.14)

e

Hence, given €57 it follows from (4.14) that g

AK = 9(81) as g, * 0 , (K=1,2,3) . (4.15)

e T T

“rom (3.14), which can be written as R k= R, the norm of B,K is given by

l‘)

IR I = tr{(.R,KJTB,K} = Héxllz : (4.16)

= By (4.16) and (4.14) we also have ||R K” <e,(6+13e ) and it follows that

! the order of magnitude of R , is given by
- ~y

e

B,K=9(e1) as e, +0 , (k=1,2,3) . (4.17)

o

- In terms of (4.7) with m=3 and n=1, the estimate |[|R K“ noted above

implies (4.7) with k=2=1, and we conclude that quantities of 0(23) are

also of O(el) as €1-+0. It should be noted that although (3.14), which

involves R, is used to estimate the order uf magnitude of R ., the
~ ~

result (4.17) is independent of the measure of smallness €y

P e it S s K b 2l e i i e MM |l et sl 1o e R
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In order to assess the effect of E g o0 the order of magnitude of
~

the angle of rotation, we now use the representation (2.13) to calculate

the left-hand side of (3.14):

R, = (1-cos 6)(u®g’K-g’K® u)

~ ~,K ~ .

+ sin (1 -cos B){(y KXB) Qu-u® @ W}l
- 6’ SL® (Exg‘) -sin 8 cos 8 SL® (E,KXSL) . (4.18)

The above expression involves both the angle 8 and its gradients. In order
to estimate the order of magnitude of the latter quantities, we proceed to
isolate the term containing e'K in (4.18). To this end, we first obsexve

that if the directions E,K vanish, every term in (4.18) is zero except the
one containing O,K’ namely -e’KgL® (Ex SL)‘ Next, let Oy (K=1,2,3) be a

set of unit vectors along the directions of E,K"O and choose a second set
of uait vectors Yk (K=1,2,3) such that for each K the set of unit vectors
(E,IK,ELK) form a right-handed orthogonal triad*. Then, by considering the

k

scalar Gy * RTR KYK (no sum on K), it can be verified that
K~ 4K

u

Our preference for the order of the unit vectors in the right-handed triad
(WrYg»aK) is simply because this leads to a positive sign on the right-hand
side of (4.19). Alternatively, a negative sign would result on the right-
hand side of (4.19) if we had chosen the set (u,ay,Yg) as a right-handed
orthogonal triad. T

L 3
Details are given following (B10) in Appendix B.

23.

e e e ek o e S M= s S 2 e i T et i sl




TEED ST e

G e

RO TR i

it

PR N

i
[
i

¢

H

Yy

R I ST ACR T TN L T 2 R e ST s e s

M s EPRE TR B

) =+8 (no sum on K) .
»

T
o Rglg =-8 guxopee vy K

K =~ ~ -~
From comparison of (3.14), (4.15) and (4.19) we may now conulude that
throughout the body B the gradients of the angle of rotation have the

order of magnitude given by

(4.20)

G’K = O(El) as & ¥ 0 (k=1,2,3) .

To continue the discussion, suppose that R=1 at some material point
X € 8, or that equivalently 6 =0 at oX. Then, at any other material

point X, the angle of rotation can be calculated from

6

X
J7 woraxon s (4.21)

o~
where dS is the arc length of an arbitrary curve C in the reference con-
figuration of B, A=A\ & is the unit tangent vector to C and the integra-

*
tion is performed along the curve joining oX and X. By means of the

usual inequalities for integrals, from (4.21) we obtain an estimate
for the magnitude cf 6 in the form

X
6] <.f* 196/0%, | [ lds = (5 1Tt (4.22)
x b3

0~

where (8 K) and XE are the values of § K and AK at some point on the curve

C, respectively, and where L is the length of the curve C joining oX and X.
Since XE are components of a unit vector and since the estimate (4.20)
holds throughout the body, from (4.,22) we conclude that the angle § at

every point of B has the order of magnitude

g = 0(51) as gy > 0 , (4.23)

provided that R=1 at some point 05 € B. Recalling the power series

*
The existence of such a curve in $ is ensured by the connectivity assump-
tion of the region£R° in section 2.
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expansions

3 2 4
A B =1 .9 .8 _
sin 6 = 6 - FTH o0 s COS g =1- 3T * 7 s (4.24) i
3
it follows from the estimate (4.23) that
sin 0 = 0(81) , cos B =1+ 0(8?) as € +0 . (4.25)

Using (4.25) in the representation (2.13), we conclude that provided R=1

at OX, the rotation tensor R satisfies

R=1 +0(el) as € > o . (4.26)

Since by (4.5) the rotation was defined as R= I*-O(ez), it fo'iows from
(4.26) that provided R is a unit tensor at some point oX r.f the body,

quantities of O(ez) are comparable to 0(31) as el-*O.

Thus far in the develcpment of this section, the order of magnitude

of E K (and hence also of R or 0) has been regarded as independent of

~y

that of the strain E. In order to relate the estimate of the rotation

tensor R in (4.26) or the angle of rotation 6 in (4,23) to the order of

magnitude €, an additional assumption must be made concerning the

relationship between the orders of magnitude of E and E g °F equivalently
-~ ~y

between € and €y- But, prior to such an undertaking, we need to dispose

of some geometrical preliminaries and definitions,
Consider now any unit vector v and rotate this by the rotation tensor

R through an angle o vesultiig in the vector R v. Since the proper

orthogonal tensor R is length preserving, the magnitude of v remains

Sk o o M i e llnd . ot .

unchanged upon rotation and we have

cosa=veRvV , (4.27)

which represents the projection of the rotated vector R v along v (see the

25.
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sketch in Fig, 1). With the use of (2.13), it can be shown from (4.27)

*
that cos o is bounded from below by cos 8 in (2.14), i.e. ,

cosa & cos @ (4.28)

.

It may be noted here that the angle a=0 if v is parallel to the unit

vector Y in (2.14), while a =6 if v is perpendicular to u.

~

5 To continue the discussion, let B stand for a vector defined by (see

. also the sketch in Fig. 1)

[ o]
]

Rv-v or Rv=v+g . (4.29)

Keeping in mind that both v and R v are unit vectors, from the inner

product of (4.29) with itself we arrive at

P
p 2 E
" %8B =%|g|“=1-veRv=1-cosa , (4.30) )
l ~ ~ ~ ~ ~ ~ =
: & " which shows that %|B‘2 is the difference between unity and the projection g

= of R v along v. Now, let ¢ denote the angle that the vector B makes with }

v as indicated in Fig. 1. Then, by (4.29)1, we have

Bey = lgleos o =- -y RY (4:51)

e oo iz

Since the right-hand side of (4.31) is -%|8|% by (4.30),, it follows that

cos ¢ in (4.31) is not an independent quantity and is, in fact, given by

¢ A cos ¢ =-%[g].

4.2 The special case of infinitesimal kinematics

Before proceeding further, it is instructive to consider the case of

=t M, i

classical infinitesimal kinematics in which both the strain and rotation

i
are small. Thus, we introduce the following 3

*
Details of the argument are given following (Bll) in Appendix B.




Definition 4.1. Given E= O(eo), a proper orthogonal tensor R is

said to be an infinitesimal rotation with respect to € if for any unit

vector v, the vector B defined in (4.29) satisfies

-~

§ = g(eo) as g, + 0

It follows at once from (4.32) and (4.30)2 that R is an infinitesimal

rotation in the sense of (4,32) if and only if

i.e., the projection of Rv along v differs from unigrbyo(eg) as eo-vo
if and only if B is an infinitesimal rotation. Clearly, (4.33) can be
used to state an alternative definition of infinitesimal rotation which
is equivalent to (4.32).

Observing from (4.30)3 and (4.33) that cosa= 14-0(63) as e°-+0, the

inequality (4.28) together with the fact that a =6 for some v imply that

cos 6 = 1 +0(e§) , sin® 0 = O(eg) , sin@=0()

6 = 0(50) as €, +0 ,

Introduction of the approximation (4.34) into (2.14)1 2 yields
]

¢T

~

2 T
¢ = = g(eo) , f = g = -Q = g(eo) as e, * 0

If R is an infinitesimal rotation with respect to € everywhere in the
body, then in terms of the condition (4.7) we have m=2, n=0, k=24=1,

and quantities of 0(22) are also of O(eo) as eo->0.

27.
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It should be emphasized that implicit in the Definition 4.1 is the
assumption that the order of magnitude of R can be estimated in terms of
the order of magnitude of E. To avoid undue complications, we have post-
poned making explicit any relationship between €, and €, but the conditions
under which R can be estimated in terms of E will be examined later. In
this connection, it may be recalled that in the usual kinematics of the
infinitesimal theory the restriction of smallness is imposed on the
relative displacement gradient ﬁ defined by (2.6); and then, it follows
at once that both the strain and the rotation are infinitesimal. The
approach in the Definition 4.1 differs from the usual in that so far no
restriction has been placed on the relative displacement gradient H, but
infinitesimal rotation is defined with respect to €y

In the context of infinitesimal kinematics, we now state the following

Theorem 4.1, ‘The relative deformation gradient g is of 9(50) as
eo+Oifam1muyif§=g—£=9@0)aseo+0ami§isinﬁnneﬂmﬂ

rotation with respect to €, in the sense of Definition 4.1.

Proof. Let the tensor U be specified by(4.11)2 and suppose that

®,¥ are given by (4.35) so that, after the neglect of terms of 0(55),

the rotation R=1+ O(eo) as eo->0. Then, by (2.1) the deformation gradient

f=£+9@o)aseo+0amig=9wo)aseo*&

Conversely, if H defined by (2.6) is of 9(50) as eo-vo, then from

(2.3)2 and (2.6)1 we have

SERR. e
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U s 1+H+HT40(€d) as e -0 . (4.36)
If terms of 9(65) are neglected as eo-vO in (4.36), we have
T
U=T+%(H+H) = 1+0(e)) as e >0 . (4.37)

Recall now that R = Fg'l and, with the help of (4.37), obtain

R = F[I-J%(H+H)] = (I+H) (I - %H - 5H")

- £-+Q(E-HT) =1+0(e) as ¢ +0 , (4.38)

where terms of 9(85) have been neglected as eo-*O. This completes th=
proof.

It may be worth recalling that the strain gradients g,K' 9(61) as
el-+0, in view of (4.2); and that subsequently the use of this measure of
smallness, along with (4.18) enabled us to establish the estimate (4.23)
for the angle of rotation 8 provided that R=1 at some point °§ € 3. The
estimate (4.23) can be brought into correspondence with (4.34),, which
results from Definition 4.1, if and only if functions of 0(81) are assumed
to be comparable to 0(50). In terms of the conditions stated immediately
after (4.4), we may choose k=1, L =1 so that any function of

0(51)= O(ao) as e°-+o. With this additional assumption, we may now write

E,K = 9(50) as €, + 0 (4.39)
and this is consistent with
6 = 0(eo) as €, -0 (4.40)

provided R=1 a* some point 05 € 3.

We are now in a position to state the fullowing
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Theorem 4.2, Given E=0(e°) and E KsO(EO) as eo-»O, the tensor R
ERASTMESIRS I -~ -~ ~, b -~

F associated with the deformation function ¥ is an infinitesimal rotation

with respect to €, to within a rigid body rotation.

Proof. Provided that R=1I at some point oX € @, the conclusion
k (4.40) implies that R is an infinitesimal rotation with respect to ¢ .

Thus with the use of (2.13) and (4.35), to the order of approximation

R Ry

considered, the infinitesimal rotation is given by (I1+Q) as eo-> 0.

Moreover, by Theorem 3.1 anv other solution of (3.14) differs from (£+Q)

P——y

jf" by a proper orthogonal tensor function of time (say Ro) corresponding to

[o—

E a rigid body rotation and we have

i

{
X R=R(I+Q) as e =+0 , (4.41) i
| e T |
l subject to the condition that (I+Q)=1 at X= 0§ or equivalently i
| 950, R=R At X=X, (4.42)

where L = {3(-:0) as eo*() is defined in (4.35). This completes the proof.
It may be observed that in the present development, apart from rigid
borly rotation, the conclusion Q=§- I= Q(eo) as eo+0 is a derived result.
This is in contrsst to the usual approach to infinitesimal kinematics,
where the infinitesimal nature of {2 (and also of E) is implied through an

assumption of smallness imposed on the displacement gradient H.

The restrictions in the statement of Theorem 4.2 are imposed on E and

T IS LTI s e e e e e s e

E K (instead of on the usual displacement gradients) and for an explicit
~

L V calculation of the rotation tensor we need to return to (3.14). Alterna-

o s el b il | it e I el oiam i

tively, in view of the representation (4.41), it will suffice to calculate

the skew-symmetric tensor {2 and then R is determined. To see this,

!

4 introduce (4.39) into (4.13) and after neglect ot terms of O(e:g) as

EO + 0, obtain

30.
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as € *0 (4.43)

T
Ag m-Ap =B (e ®@e)-(e @e)E | = 0(c)

But the expression for the gradient of R by (3.14) is R K"B QK and

‘ substitution from (4.41) results in

R, = R+ Ay - (4.44)
Since Bo is nonsingular and since Q= 9(60) and 5!(' 9((-:0) as eo-bo by
: (4.35), and (4.43), respectively, (4.44) gives”
?[ Q‘K = A (4.45)
; where terms of g(eg) have been neglected, The tensor Q can now be
; | determined as a solution of (4.45) subject to the condition (4.42).
f With the use of (2.1}, (4.11)2 and (4.41) we note that the deforma-
? tion gradient is now given by
a |
o Fa Bo(z-kg-*g) as €+ o, (4.46) |
f i
3 where terms of g(eg) have been neglected. In addition, by (2.6) and f
j (4.46) we also have
5 He (R~ DR@eB) as ;40 (4.47)
i
g In the above expression, it is H- (Rj-1I) and not H itself which is
: infinitesimal with respect to €,
b
[i 4.3 Small strain accompanied by moderate rotation

The foregoing development [between (4.32) and (4.47)] which began

§
: with Definition 4.1 dealt with infinitesimal kinematics. We now return

: to our main objective and introduce

1
) Definition 4.2. G ven E= Q(EO), a proper orthogonal tensor R is

*
The component form of Egs. (4.45) are, of course, the same as those used
in the infinitesimal theory of notion mentioned in the first paragraph

of section 1.
31.
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said to be a moderate rotation with respect to € if for any unit vector

v, the vector B defined in (4.29) satisfies

g = g(ef) as € +0 . (4.48)

It follows at once from (4.48) and (4.30)2 that R is a moderate rotation

in the sense of (4.48) if and only if [compare with (4.33)]

l-veRv = 0(50) as e~ 0o, (4.49)

i.e., the projection of B v along v differs from unity by O(Eo) as eo-vo fﬂ
f in thu case of moderate rotation.

: Observing from (4.30)3 and (4.48) that for moderate rotation:

cos =1+ 0(50) as EO-*O, the inequality (4.28) together with the fact

that a =8 for some v imply that

P e g -

2 I 15
cos B=1+0(c ) , sin” 820(e,) , sin e=0(e§) , 820(c)) as € +0 . (4.50)

Clearly, (4.49) can be used to state an alternative definition of

ot skt

moderate rotation which is equivalent to (4.48).

i As in the Definition 4.1, woe aguain observe that implicit in the

Definition 4.2 is the assumption that the order of magnitude of B can be
estimuted in terms of E. Again to avoid undue complications, we have
postponed making explicit any relationship between €, and € but the
conditions under which moderate rotation can be estimated in terms of
infinitesimal strain will be examined later. However, two aspects of

the conclusions (4.50) for moderate rotation may be noted here:

T e - e e

(1) The results (4.50) have been obtained with respect to € and are
f independent of €, dc fined by (4.2); and (2) the angle of rotation in
1
b (4.50) is of 0(&:) in constrast to that of 0(50) in (4.34) for infinitesi-

mal rotation, Thus, after substituting from (4.50) in (2.14) and
1,3 1,2
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neglecting terms of O(Eg/z), the functions ¥ and ¢ in (2.13) for moderate

rotation are approximated according to

15
AR AR ICONNE R R (RN

(4.51)
? f = 29 = 9(&0) as g, o .
It should be noted here that if R is a moderate rotation with respect to €
everywhere in the body, then in terms of the condition (4.7) with m=2, n=0,

k=2, £=1, quantities of 0(e,) are also of 0(5?) as €_+0.

We now state the following

! Theorem 4.3, If EaU-T= Q(eo) as e°-+0 and R is a moderate rotation
in the senso of Definition 4.2, then the tensor Q defined by (2.6) is of
9(53) as eo-+0. Conversely, if Ha= g(ez) as e°->0 and, in addition, if

e the symmetric part of (2.6), i.e., g-hﬁT is of g(eo) 28 e°-+0, then

U-1I= 0(30) and R is a moderate rotation with respect to €,

Proof. We first prove the first part of the theorem, If
l U-T=E= 0(60) as eo-»O and R is a moderate rotation given bv (2.13)
with ¢ and V¥ estimated by (4.51), then recalling (2.1) we have
FaI+Y+d+E , E = Me& )

(4.52)

¢,¥ given by (4,51) as e, 0

and H -Q(eg) by (2.6).

We now turn to the converse part of the theorem. By assumption,
i . @- 9(82) and §+-§T- 0(50) as eo-*O. Hence, substitution into (2.7)1
yields E = 9(80) as eo-*O and by (4.11)2we also have UsTI+ 9(60).
- Further, in order to obtain the desired estimate for R, from (2.1) we

have R=F U™t and from (4.11)3 we recall that

Ul e 1B I-u@eH vHTH) as e >0 . (4.53)

Then, R can be expressed as

= P TRTPSURYELIVFLS NPT POl PRIV WA o . SIS ¢ W NPy s gt e e ke e
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R= (I+H){I-%H+H +HH))
= I+%(H-HD) -5HTH 02 (4.54)

A close examination of (4.54) reveals that if we identify the skew-
symmetric k(g-—gT) as g and the symmetric -%HTH as ¢ so that thesc
quantities can meet the condition (4.51)3, then R in (4.54) can be

identified as moderate rotation. To show this, we recall that by

assumption

H=-HT+9(EO) and gT=-H+oceo) as e +0 . (4.55)

Thus, after forming the product ¥ ¥ = [i(H -H)][%(H-H")] and neglecting

terms of 0(62/2), we obtain
e - HD 16 - 1)) = %{-26 + 0(e )} (2H + 0(e )}
= -ﬁTE ) (4.56)

which meets (4.51)3. Hence, R given by (4.54) is a moderate rotation and
the proof of the theorem is complete.

We recall once more that the strain gradients E,K= 9(51) as el->o,
in view of (4.2), and that the estimate (+.23) for the angle of rotation
® is also obtained with respect to e,. This estimate (4.23) can be
brought into correspondence with (4.50)4, which results from Definition
4,2, if and only if functions of 0(51) are assumed to be comparable to
0(63). In terms of the conditions stated following (4.4), we may choose
k=2, 2=1 so that any function of 0(¢,) = 0(c)) as € +0. With this

additional assumption, we may now write

E , = O(E;) as €_=+0 (4.57)

34.
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and this is consistent with

e=0(eli) as € _-+>0 ,
) )

provided that R=1 at some point X E 3.

We now state a theorem concerning the order of magnitude of R:

73 Theorem 4.4. Given §= g(eoj and Grad E= g(sz) as e°+0, the tensor 5
associated with the deformation function X is a moderate rotation with

respect to €, to within a rigid body rotation.

Proof. Provided that R=1 at some point 05 € 8, the conclusion (4.58)

implies that R is a moderate rotation with respect to € in the sense of

LT s

Definition 4.2. Thus, with the use of (2.13) and (4.51) and to within

3/2
o

terms of 0(e’’ "), the moderate rotation is given by

L B ta

I+d+¥Y as so-»O ,

] (4.59)
¢ and ¥ specified by (4.51), , .

' Moreover, by Theorem 3.1 any other solution of (3.14) differs from (4.59)
f . by a proper orthogonal tensor function of time (say Ro) corresponding to

' a rigid body rotation and we have

R = RO(I+¢>+‘£) ,

(4.60)
¢ and ¥ specified by (4.51)1 5
)4 ~ s

subject to the conditions that

e et N At AR

$=¥=0 , R=R_ at X= X (4.61)

h and the theorem is proved.
s . ) It should be emphasized here that the approximations for moderate

rotation occur only in the functions ¢ and ¥ as specified by (4-51)1’2-
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The rotation R in (4.60) may in fact be large, in view of the presence of

ﬁ Bo which represents a rigid body rotation. Indeed, it is the proper

% orthogonal quantity BZB which may be termed moderate rotation and not R.
The restrictions in the statement of Theorem 4.4 are imposed on E and

E K and for an explicit calculation of the rotation tensor we need to

~

return to (3.14). Alternatively, in view of the representation (4.60), we

may calculate ¢ and ¥ to the order of approximation considered and then R

ki -

is determined. To show this, introduce (4.57) into (4.13) and after neglect

TR

o of terms of 9(€2/2) as € +0, obtain
; 1
L A, =-AT=E (e,®e)-(e, ®e)E = 0(?) as & +0 (4.62)
i ~K ~K© Z,LYK T L ILTOIKIS,L T <Yo o ‘ .
& vy Substitution of (4.60) into R K= R AK’ which is obtained from (3.14),
i ~ ~o
? results in i
)
Py Ry kY ) = Ry(D+2+¥)A (4.63)
Co )
P But, with the use of the order of magnitude estimates (4.51)1 2 and (4.62),
fe ' ?
g after neglecting terms of 9(52/2) and remembering that Eo is nonsingular,
' from (4.63) we obtain
! i}
E Sty T A A (4.64) ,
E Since ¥  represents the skew~symmetric part of (4.64), we may write g
: ¥oo= @ Y ) (0t )
b ~ K LK LK ~ K ~,K
¢
i’ = A+ Y A - (A +y ADT
g KL X ~K <~ =
: = A - l
A A A @65) |
4
where (4.62)1 has been used in obtaining (4.65)3. Given E K (and hence AK)’ [
- z, - !
f . (4.65)3 may be viewed as the differential equation for ¥; and, once ¥ is %
4
36. [
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determined, 9 can then be found from (4.51)3.

It is useful to record here the expressions for the deformation
gradient F and the relative deformation gradient H associated with moderate
rotation. Thus, with the use of (2.1), (4.11)2, (4.60) and upon neglect of

terms of 0(82/2), the deformation gradient can be expressed as

F = RO(I+¢‘+W+E) as €, -0 . (4.66)

Similarly, by (2.6) and (4.66), we have
H= (R -I)+R (¥+3+E) . (4.67)

In view of the remarks made in the paragraph following (4.61), it should
be noted that in the above expression it is [E' (Bo- I)] and not H itself

which is moderately large.

4.4 Construction of a motion which results in a properly invariant small
strain and moderate rotation.

From among all particles of &, let Y be chosen as a pivot whose trans-
lation and rotation is specified (Casey and Naghdi 1981). Then, cor-
*
responding to any motion ¥, we can construct another motion X by removing

from X the translation and rotation of the pivot. Thus, we can write

* * * T{ }
2‘( = )‘S (E)t ) = BO )_S(Elt) 'X(ozot) +°§ ’

(4.68)

*
t =t-¢c ,

where OX denotes the position vector of the pivot Y in the reference con-

figuration Koo Ro= R(OX,t) is only a function of time and ¢ is a real

* * ]
constant. The configuration of # at time t in the motion X is k . We

!
!

observe that (4.68) is of the form (2.9) with
Q(t) = R}, a(t) =-RX(X,t)+ X , a=-c . (4.69)

Then, with the use of (2.10), (2.11), (4.60) and (4.66), we easily conclude

e P AR ke e T U

that
37.
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F =1+0+¥Y+E as e°+0 s
*
R =1+%+VY as so->0 .

and that
¥ * * *

9‘9’9=9’§=E’§,K=§,K

* * %
In the configuration k , the relative displacement u =X - X, and the

*
rotation tensor R = RER are such that

* * * *

u(Xt)=0, R

* L]
The expressions for Grad u =u K® e, are again of the form (2.6) hut with

H replaced by

H =u_Qe  =0¢+¥+E

It is clear from (4-51)1 2,(4~11)1 and the right-hand side ot (4.73), that
* ) *

u K==O(e§) as eo-*O. From this result and the fact that u vanishes at

-, -

X by (4.72),, it follows that the displacement

* * 12
= [
u (X,t) 9(.0) as €, >0

-~ -~

- *
throughout the body . Similar to (2.7)1, the strain measure E can be

-*
calculated in terms of H so that

. * ® * <* L ® }
Hu  (®epre, @u v (uyru e @l .

It should be noted that in the above formulae for infinitesimal strain,

e
'The line of argument here is similar to that employed between (4.20)-
(4.23).
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while both quantities H +H ~ and g H are of Q(eo), 5 = 9(60) as eo-*O.
It has been shown in the paper of Casey and Naghdi (1981, Theorem 3.1)
that two motions 1% and 2X of B differ by a rigid motion if and only if

*
1X*==2Z*’ i.e., by construction ¥ remains unchanged if X is replaced by

~

)(+ in (2.9). Thus, with (x+)* defined by [see section 3.2 of Casey and
Naghdi (1981)]
+ 0 * +. T, + + + +
G 1) = RGN - xT( Xt e X
and with ¢ chosen equal to -a in (2.9), all quantities with respect to the

*
configuration k remain unaffected by an arbitrary (net necessarily small)

superposed rigid body motions and we conclude that

+ * * +* *
Xx) =x , F =F =T1+3+¥+E ,
+x * 3% *
R =R =T1+%+¥ , H =H =3+¥Y+E |,
+* * s +% * % *

* *
where (F) =Grad(x’) .
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5. Invariance of constitutive equations with small strain accompanied
by moderate rotation

We briefly discuss here the invariance of constitutive equations (and
hence that of a complete theory) for small strain accompanied by moderate
rotation. Although the development of this section is specifically
carried out for the case of an elastic material, it will be clear that
our main conclusion reached holds for any material. The procedure for
constructing a properly invariant theory in the presence of moderate
rotation is similar to that used by Casey and Naghdi (1981) for an
infinitesimal theory of motion in which, apart from superposed rigid
body motions, both strain and rotation ars small.

The notations for the mass density, in the configuration K, the
outward unit normal to the surface 3R, the stress vector E acting on
3R and the Cauchy stress tensor I were introduced in section 2. We
denote the corresponding quantities in the motion 5*, introduced in
(4.68), and in the configuration E* by o*,g*,E* and I*, respectively.
Recalling that BT(o§’t)= BZ in (4.68) is a function of time only and plays
the role of g(t) in (2.9), as noted also in (4.69)1, it follows from

(2.16)1, (2.16)2, (2.17) and (2.18) that

* * T * T
K (Xthn , t =R (OX,t)E )

T
]
o]
3
1

(5.1)

T
B (o§'t)f B (o§’t)

3
]

*
Similarly, associated with the motion (x+) defined by (4.67), we have

s +* 4% +* +* ‘s :
the quantities p , n , t and T . These quantities, with the help of

-~ ~

(5.1)1 234 (2.11) and (2.16)-(2.18) transform according to (Casey and

Naghdi 1981, section 3):

40.
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For an elastic material, let Y =y (X,t) denote the elastic strain
L]
energy per unit mass in the configuration k. Also, let ¢+ and ¥ denote

. . : + *
the strain energy per unit mass in the configurations Kk and x , respec-

i L]

E tively. We assume that ¢+‘=w and it then follows that ¢ =y. The
f nonlinear behavior of an elastic solid may be characterized by the
constitutive equation

T}F , (5.3)

~

]

f

L o T=4% oF{W- )
[

Ny -
where Y=Y (E). We observe that in view of (2.10), (2.16)1 and the fact

that §+==§ the value of T of the stress tensor given by 3
(5.3) for the motion x+ satisfies (2.18), so that (5.3) is a properly

o
invariant constitutive equation. The Cauchy stress T in the motion

*
¥ has the form

T =50 P2« (AT T (5.4)
~ ~  QE oFE ¥

~

1

T T A AL G L~ e i i et e

ot

and satisfies (5.2)4.

i

i 4

e Suppose now that the motion is such that E=0fc ) and E = O(e;) as
-~ bl -~ ) -~

- it

eo-+0 and recall that for such a motion the deformation gradient is given
by (4.66). It then follows from the local equation for conservation of

. t mass, namely p det F= Por that for small strain p can be approximated as

e 7 o M, i n i

p=p,*0(,) as e +0 , (5.5)

-

is the mass density in the reference configuration Ky Further,

fa)

é .
: ) where fq

kb

assume for simplicity that the strain energv ¢ is quadratic in E so that

eda
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X

where X is a constant fourth order tensor and {{?[E]}T =u51§]. With the
help of (5.6), (4.66), (4.11)1, (4.51), (5.5) and after neglecting terms

of 0(52/2) as e°-+0, from (5.3) we obtain
T = p R JIEIRY
~ o~°~ -~ wo
After substituting (5.7) into (5.1)4, we have

T
0

T« Ry TRy = 0 K[E]
It is now clear that the constitutive equation (5.8) meets the require-

ment (5.2)4 and is properly invariant. As noted in subsection 4.4, the

method of construction of Casey and Naghdi (1981), which is also used in

the development of this section, removes from all motions the translation

and rotation at any particle Y of the body called a pivot. But. even in

the presence of moderate rotation, it can be demonstrated that it does not

matter which particle is chosen as pivot. Indeed, it is shown in Appendix C

that the theory in which the deformation gradient given by (4.66) is con-

3/2
)

structed with Y’ as pivot coincides, to within terms of 0(c”’ "), with that

having Y as pivot.
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Appendix A

A brief account of notation and mathemat:c#' terminology used in the
paper is given at the end of section 1. In this ‘ppendix we collect
additional terminologies and mathematical results utilized in the
development of the paper.

Any linear mapping between a set of vectors and a set of second order
tensors will be regarded as.a third order tensor. In particular, the
tensor product aé@ 9 @ ¢ of any three vectors E'E»S € V is a third order
tensor defined by (343 E S g)z =crva e E, and we alsn define a product
(g ® 13 ] g) [1~1 ® !] = (13 . g) (E . ‘1)3’ for any vector u,v € V. We note that
the tensor product between a second order tensor and a vector, i.e.,
T@®vory @ T for any second order tensor T and any vector v, is also

defined as a third order tensor. The product of a third order tensor and

a second order tensor is again a third order tensor defined by
(Aa@b®c)(UuvVv) =2+u(a@bOVv) = a@ )b vV) ,
(a@bBCc)T=a@b® (Tc) , T(a®b®c) = (Ta)®bBcC ,

for any vectors a,b,c,u,v € V and any second order tensor T. Since the
transpose of a third order tensor is not uniquely defined, we introduce
three kinds of transpose distinguished, respectively, by superscript

TI’TZ'TS' Thus

=a® (b®c)!

u
e
2]
0
®
1o

T T
(a®b®c) “=(a®b) ®¢c
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the transposition of ¢ and a. It is clear that as a consequence of these

definitions, our definition for the transpose TS can be related to those

Keeping this in mind, it is convenient to
T T, T, T T, T TZ
g

for the transpose Tl and TZ'
introduce the abbreviationd = [(A 1) 2] 1a [ ?)

for a third order

tensor A.

The linear 1apping from the set of second order tensors into itself
is a fourth order tensor. In particular, the tensor product a® b @ ¢ @ d
It is useful to

of any four vectors a,b,c,d € V is a fourth order tensor.
record the relationship (a € b® c@ d)[u® vl=(c*u)(d*v)a®b, which
is a second order tensor. The transpose JCT of a fourth order tensor X is

defined by the relationship B -J~([A] = A °.{CT[B] for all second order
tensors A,B. Clearly, (a8 b 2 c ? g)T= (c® g@ g@ E).
We discussed the component representation of second order tensors

in section 2. Similarly, for a third order tensor 4 or a fourth order tensor
K we may write A = Ay e D¢ @ey and L =Ky o D¢ ey Qe where

= ot Ao Peyl, and Ky = (g @ey) » Klgy®eyl.

-~

JKLM
The gradient of a scalar-valued function ¢(X) may be written as

Grad ¢ = a—")?L e - (A3)
< S

Similarly, the gradient of a vector-valued function v(X) and the gradient

of a second order tensor-valued function T(X) will be denoted by

44,
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Gradxa—a—x—eLQe , ]

K 1
(Ad)
Ty
Grad 1’ ] e e, e e, ,

BXK M® 3 F l( ~K

o aabbelie

while their components can be written as

et e e

(Grad viey = (v ¢ ® epdey = v Sy =V y

(A5)

| E
{ ﬁ (Grad I)EM = ('_I:‘K(3 SK)QM I,KGKM I,M ) |
l
I
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Appendix B

This appendix provides details of the calculations of several results
and formulae stated in sections 3 and 4, We begin by noting that the con-
ditions (3.10) or (3.11) are regarded .s the system of differential equa-
tions for the determination of F from the Knowledge of C. As such they
were obtained as necessary conditions. To show that they are also

sufficient, we consider the expression of the form

(B1)

CanFamd x * Fin,kFim* FicFiuge
Assume that FiL are the solutions of (3.10),. Then, by direct substitution

of (3.10)2 on the right-hand side of (Bl), it follows at once that

(FynFind k ° Cumyk (B2)

Thus, any solution FiL to (3.10) satisfying the condition that FiLFiM= CLM
at one point will have the property that FinIwi'CLM aeverywhere. Moreover,
since the right-hand side of (3.10) is symmetric with respect to the indices
(K,M), it follows that a solution B, to (3.10) will also satisfy (3.6) and
this, in turn, ensures the existence of the deformation function X

It was remarked following (3.11) that since U can be determined
uniquely from the knowledge of g, with the use of (2.1), we obtain the

differential equations (3.12) for the determination of the rotation B.

To show this, we substitute (2.1) into the expression on the left-hand side

of (3.10) and obtain

FicFimk = RinUniRipUp k ® UniUs,k * UncRinRip, kUM
or after rearrangement of terms

-1, -1
RowRin, k = Ye FinFip, k- Youbep, k) Vpn (83)
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Next, we substitute from (3.10) on the right-hand side of (B3), make use

T .
of CKL' UKMUML by (2.3)2 along with R 5,K= (RiMRiN,K)gM‘8 e and obtain

a
-
A
X
i
l;
i
v
)
3
E.
.
(N

(3.14) and (3.15). The component forms of these equations, namely

T = 1 “1 - - '1
R'R ¢ = %lUg (U o= Ung, 1) * (- U, 0 V0N

Y. U e ® o (B4)

-1
+ U kYL’ e © oy

wp (Y

p,L " Yau,p

ﬁ, correspond to Eqs. (8)-(10) in Shield's paper (1973). #

To obtain the necessary and sufficient condition for the existence of

R, we first recall that the necessary and sufficient condition for the

existence of the deformation gradient tensor F which satisfies (3.11) is that

L
§
t‘ - Exe® Bk o Fiyko ™ Fimk (B5)

f
|
E Again substitute from (2.1), and after cancellation of identical terms,

(B5) becomes

RRLIUFRU g = RgU+RU 1 (B6)

Clearly for a given U, U KL ® U LK and since U is nonsingular, it follows
~' ~

) ~ oy,

from (B6) that the necessary and sufficient condition for the existence

of R is

RxL® Rk - (87)

RIS eTI T C s v

Alternatively, we may obtain the conditions for the existence of R by

f considering the required conditions for the existence of a solution of

(3.14)., Thus, from (3.14) we write R K™ R AK and after substitution from
~y ~ o~ ]

(BS) or equivalently (B7) we obtain: }

- AL At Bk ALt 0 (B8) j
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This corresponds to Eq. (11) in Shield's paper (1973), which was obtained

L ‘ as a special case of more general results discussed by Thomas (1934).

oot mna o e e S et Y E:

In order to verify the truth of the inequality (4.4), we first |
observe that for real numbers a and b, 0<a<b, the following two

inequalities hold:

a < b, at <p" . (B9)

Next, with the help of (B9)2, from the result (4.3) which holds for k,%

N positive integers, we obtain (el)l/k<:(Eéi)l/k or e1< Cl/k z/k and hence

l/kef;/k)“ . (B10)

e? < (€

Then, from the condition on th(E || given following (4.2), namely
~

"

th(E K)I|<De? as €, +0, the inequality (4.4) follows from (B10).
~

O,

: To verify the truth of (4.19), with the use of (4.18) consider the

L | . scalar Gy RTR KLk and observe the identities (no sum on K)

~ o~y N~

Oy ¢ (1 ® U,K)YK - (u X YK) )

ot L By = w0 e i)

et

(B11)

Gprep ® QU pxedye = (g e ) xep ny ) =1 (X (@eeede *yy

e e n s

i i

|

|

|

gt oL ® xepyy = Qe Wxe Y X% Yk {
. f i
\

Since (B’IK’gK) form a right-handed orthonormal triad, (Bll)l’2 vanish
identically and (Bll)4 is equal to -1. In addition, since a is directed

; . along E,K'(Bll)s vanishes also and the scalar aK BTB,KXK reduces to (4.19)
2 We next establish the validity of the inequality (4.28), where 6 is

g '._ the angle of rotation for the tensor R, and o is the angle between a unit

’ 48.
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3 vector v and the rotated unit vector R v. With the help of the representa-

tion (2.13), we have
cosa=z-(5 ‘.f) - (E,X)ch-cos 8) +cos 6 . (B12)

Observing that (1-cos 6)20, and (u-* v)2>0, we conclude from (B12) that

cos a>cos 0 and (4.28) is verified.
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Apgendix C

In a recent paper, Casey and Naghdi (1981) have shown that a theory
in which both the deformation and deformation gradient are small can be
constructed so as to possess desirable invariant properties in that the
constitutive equations and the equations of motion are properly invariant
under arbitrary (not necessarily infinitesimal) superposed rigid body
motions. The method of construction is effectively such that they consider
the rotation at one material point, called the pivot Y, and then remove
from every point of the body this rotation obtaining a new configuration
5*, and then show that in the configuration 5* all constitutive results
are properly invariant. In the second part of their work, they demonstrate
tnat to the order of approximation of the kinematical result, it does not

matter which particle is chosen as pivot.

It is the purpose of the present appendix to show that the choice of
pivot is immaterial also in the presence of moderate rotation or more
specifically for (4.60), (4.70)1, (4.73) and (4.75). Temporarily, we
attach the subscripts Y and Y/ to quantities f*,ﬁ*, etc., when the pivots
Y and Y’ are identified with material points whose position vectors are
X= 05, and X=X # 05, respectively, in the reference configuration Ko

Using (4.60) and (4.51), the rotation tensor at X’ is given by

Rys=R(X\,t) = R (I+¥/+0")
where

¢’=¢>(X',t)=0(€o) as € _+0 |,

~

Y= y(X/,e) =-W’T=0(€;/2) , Yyl = 2ef

Recall the form of ithe rotation tensor in (4.60) and multiply the right-

I. With the help of (Cl), the tensor R can be

~

hand side by BY’Bi’

written as

(C1)

(€2)

AT e T A

e At




— s T ey T T e IS e e e o

(Ry Ry AR (1 + 8 +¥)

LR -]
[}

= R (10 v ¥ (e o)

OSSR IS A Al B

Ry (I+[o+ 0/ -ty +¥ ¥N)]

AR ARE LR RS BN} (c3)

as eo+0, vhere terms of g(ag/z) as ao+0 have been neglected. Consider

< g T -
TR IS T,

: the quantities

T=F(X,t) = 040/ KU Ney ¥ =7,

(C4)
) Vo= T(X,t) = ¥-¥/ -5 -y Yy =TT ]

! _ - 1
and observe that ¢>=0(eo) and ¥ = 0(8?) as eo*O. By direct calculation

] 3/2

after neglecting terms of 0(e.' ") as eo+0, we conclude that

L °
e
A V=20 as g, > 0 . (€5)

i In addition, both & and Y vanish at X= 5’. Thus, (C3) has the form

; R=RY/(I+§+‘*~7) )

|

2
T = 0(5;) s i ’ (Cé)

~

€|
u
1
1=
=
¢ €
]
1)
=y

?6=3=0(eo) as € =+ 0 ,

P4

Ry, = ROX,t) , 8(X/,t) = ¥(x/,t) = 0

Hence, we conclude that the form (4.60) remains unchanged by the choice

W P U= A Y P

Y’ as the pivot,

From (4.66) and with the help of (Cl) and (C4), we calculate

p—

" ey rree

-
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Feo= Ry
= (I+¢’+‘¥’)TR2RO(I+<D+‘¥+E)
= (I+0+0/+¥-¥/ -YN¥+E)
= 1+3+V+E (C7) ?
3/2 - 1
where terms of O(e—:o ) as £y~ Y have been neglected. Thus,
* * RO —
HY/=F,-I=<I>+‘¥+E (C8)
]
Using (C8), we again have ;
L] 7 _‘*T * i
Eyr = %(Fys Fys- 1) ;\
i
7 * * *"I“ * !
= Alys ety By By ) = B (C9) ?
! . Hence, (4.70),, (4.73) and (4.75) are not affected by the choice of
; ~ pivot.
o)
in the above, we have E K=O(eé/“) as € 0. It should be clear that ,
~ ~ ,
‘ similar procedures can be used for the case in which E K= O(eo) as eo->0. 1
Betore closing this appendix, we consider the consequence of the change
. " |
E‘L cf pivot Y on the stress tensor T defined by (5.7). When a particle Y/, !
) |
;. different from Y, is chosen as pivot, (5.8)l becomes %
5 !
1 =R, TR c10 !
E I\{/ = ::Y/ N ~Yl ’ ( ) i
| |
E' witere Rys=R (X=X’,t) is a function of time only. Keeping in mind that 3
] K(E)=0(c,) as € +0, with the help of (C1), (C2), (5.7) and (5.8), to the
1
order of approximation considered we obtain §
. ]
)g .
!.\.».
¥




/I cwipt T, Y
Y’/ p°(£+g +\g )50504[15]5050(5*9 +¥ )

*

y -

[

PoXI(E] = T

where in writing (Cll)2 terms of g(eg/z) as eo-+0 have been neglected,

3/2

*
o ), T is :maffected by a change of

Hence, to within terms of 0(e

pivot.
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Fig. 1 A sketch showing the vector R v obtained by

: rotating a unit vector v through an angle o y
i ~ ¢
: and the vector B representing the difference !

b
. of v and the rotated vector R v.
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